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Selection of an Attractor in a Continuum of
Stable Solutions: Descriptions of a Wave
Front at Different Scales
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Details of the particle dynamics are shown to modify the mean speed of a
chemical wave front propagating into an unstable stationary state. The
comparison of several description methods at different scales allows us to dis-
criminate between different sources of departure from the macroscopic deter-
ministic prediction and to give a quantitative expression of the speed corrections
induced by discretization of the variables, internal fluctuations in small systems,
and departure from local equilibrium in the presence of a fast reaction.
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nonequilibrium kinetics; microscopic simulations.

1. INTRODUCTION

The paper is devoted to the analysis of a chemical wave front propagating
into an unstable stationary state and to the problem of selection of its
propagation speed.("'” Depending on the scale of the description chosen,
the selected speed is different. To put it in a more general frame, the point
is to determine the mechanisms governing the selection of a given attractor
in a continuum of stable solutions. My motivation is to weave some links
between the microscopic description of a spatio-temporal structure and its
macroscopic properties. A way to better understand these links is to iden-
tify generic situations where the macroscopic deterministic dynamics is
sensitive to even weak perturbations and thus, in particular, to the details
of the underlying microscopic dynamics. A well-known example of such a
sensitive situation is the vicinity of a bifurcation where the amplitude of
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fluctuations diverges.'"® But this critical behavior only occurs for specific
values of the parameters. A second example is self-organised criticality,
where the macroscopic system evolves by itself toward a critical state, this
time, in a large domain of parameter values. I am interested here in a third
class of generic situations where internal fluctuations can be intuitively
suspected of playing a role at an observable scale: It is the case of dynami-
cal systems admitting a continuum of simultaneously stable solutions, easy
to be visited by even small fluctuations. The propagation of a wave front
into an unstable stationary state offers a simple as well as rich example of
this kind of behavior.

To be more specific and in the frame of a macroscopic analysis first,
I consider the following partial differential equation for the single con-
tinuous variable «(x, ¢), depending on space x and time

d,a=ka(l —a)+ Dd%a (1)

For simplicity, the equation is written in the case of a one-dimensional (1d)
medium. The dependence of the results on the dimension of the medium is
examined at the end of the paper. Depending on the domain of application
of the model, the parameters £k and D have different physical meanings.
Equation (1) admits two homogeneous stationary states, « =1, which is
stable, and a =0, which is unstable. It also admits a continuous family of
wave front solutions a(x, t) = A(x — Ut), propagating at a constant speed U.
A linear stability analysis in the frame of the wave front proves the stability
of the solutions propagating at a speed greater, than the minimum value
Upin =2 \/15 An essential result of the macroscopic description‘® is that
for sufficiently steep initial profiles, like a step function, the minimum
velocity U, is selected: it is the so-called marginal stability criterion. The
partial differential equation given in Eq. (1) describes a large variety of
phenomena in biology,®>?! chemistry, combustion or economy. It has
been introduced by Fisher? and Kolmogorov, Petrovsky, and Piskunov‘®
(KPP) in the frame of population dynamics to model the propagation of
a favored gene A in a constant population of A and B. In the following,
I use the same model to describe the propagation of a wave in a chemical
inhomogeneous medium. The parameter D is thus interpreted as the diffu-
sion coefficient of the chemical species A and B, susceptible to react accord-
ing to the autocatalytic reaction

A+B—2A (2)

If the total concentration C of species A and B is initially homogeneous,
it remains constant for any position x and time ¢, and the macroscopic
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deterministic evolution of the local fraction a(x, t) of particles A obeys
Eq. (1) with k= KC where K is the rate constant of reaction (2).

As already mentioned, the point is to examine if the results of the
macroscopic deterministic description are robust when the underlying
microscopic dynamics of the particles is taken into account. This analysis
may be performed at different scales and my goal here is to compare the
results given by different approaches performed in collaboration with
Michel Mareschal and Bogdan Nowakowski. The different methods used
are briefly recalled in Section 2. The details of the procedures followed to
solve the equations or to perform numerical simulations may be found else-
where. The results are compared in Section 3, and the corrections to front
speed induced by discretization of the variables, internal fluctuations, and
departure from local equilibrium are calculated. The possible dependence
of the results on the medium dimension is analyzed at the end of Section 3.
The conclusions are given in Section 4.

2. DIFFERENT LEVELS OF DESCRIPTIONS

The reaction-diffusion model associated with the macroscopic equa-
tion given by Eq. (1) can be described at an intermediate level using a
master equation approach.'® 2223 In this stochastic description, the details
of the microscopic dynamics are not accessible but their effect is expressed,
at a mesoscopic level, by internal fluctuations of the variables. Contrary to
the deterministic description by Eq. (1), the master equation involves dis-
crete variables, the numbers N 4(i) and Ng(i) of particles A and B in each
spatial cell i of length Ax. For Fisher-KPP model, the master equation'®
governing the probability P reads:

P({N 4(i), Np(i)})

_Z{ — D)(Np(0) + 1) P(N (i) =1, Np(i) + 1)

D
—N,(i) N ()P]+( )2[(NA()+1)(P(NA(i)+1aNA(i+1)_1)

+P(N(i—1)—1, Ny(i)+1))—2N (i) P

+ (Np(i)+ 1)(P(Ng(i)+1, Ng(i+1)—1)

T P(Nyli—1)— 1, Ny() + 1)) — 2N 5(i) P]} 3)
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where N is the mean number of particles in a cell and where the depen-
dence of P on particle numbers has been omitted in the right hand side if
it does not differ from those of the left hand side. We have followed two
different ways to solve the master equation. The first method*® consists in
directly simulating the master equation using the Monte Carlo method
introduced by Gillespie.®® The main steps of the procedure are recalled in
the Appendix. In the second method,”>® the master equation is replaced
by approximate equations of Langevin type using the following hypotheses:?*
Switching to continuous variables, the fluctuating local fractions of par-
ticles, a = N 4(i)/N and f = Ng(i)/N, the master equation is expanded in
power of 1/N according to the so-called system-size expansion,®* and the
probability is assumed to be Gaussian. According to these assumptions,
the problem reduces to solving stochastic partial differential equations: the
effect of the underlying microscopic dynamics is reproduced by adding
Langevin forces F, and Fj to the deterministic equations for the local
fractions of particles A and B. It reads:

0,0 =kafi+D0*a+ F, (4)
0, = —kof+D0%p+ Fy (5)

The mean and variance of the Langevin forces are supposed to define on

their own the whole statistics. At dominant order they are given by® 2%
(F,)=<{Fp>=0
o(t—1t
CF 1) Fo 1)y =2 {kau ) dx—x)

2

0 ’
+2Dm [aé(x—x )]}

o(t

CFg(x, 1) Fy(x', 1)) = At=t) {ka(l —a)d(x —x')

N

2

0 ’

CF(x, 1) Fyx', 1)y = —L];t,)ka(l—a) S(x—x') 6)

where the local fraction a of particles A obeys the deterministic equation
(1). The Langevin equations are then solved numerically® on a CRAY
supercomputer.

To obtain information at a more microscopic level, one has to follow
the evolution of the position and impulsion of each particle. Reliable
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statistics on the mean propagation speed of a spatio-temporal structure like
a wave front are not easily accessible from Molecular Dynamics (MD)
simulations. Instead of MD, we have used an efficient simulation method
introduced by Bird®® which proposes a Monte Carlo treatment of colli-
sions between particles in a same spatial cell. The simulation can be
regarded as a direct simulation of the Boltzmann equation for the distribu-
tion f,(x,v,t) of the positions and velocities of particles A. Following
Bird,®® we consider a dilute gas of hard spheres of diameter d and mass
m whatever their chemical species. The medium is divided into linearly
arranged cells of length Ax equal to a fraction of the mean free path A.
According to the main assumption, we consider that each cell is homoge-
neous. During the simulation time step A4¢ chosen as a fraction of the mean
free time, the free motion of particles and their mutual collisions are sup-
posed to be uncoupled. Particle velocities are treated in three dimensions,
but their positions are projected on the direction of front propagation, and
the perpendicular coordinates are disregarded. In these conditions, the
section of the cells and consequently the number density are adjustable
parameters and the dilute gas assumption is not restrictive. The results
presented have been obtained for the following parameter values: density
C=0.1, temperature kzT=1, mass m =1, and diameter d= 1.

The collisions are performed in 3d as follows. A collision between a
pair (i, j) of particles randomly chosen in a same cell is accepted if their
relative speed obeys:

V=¥, > Rt (7)
where 0 < R<1 is a random number and v} . is a continuously updated
maximum relative speed. A collision impact parameter is chosen randomly
and the postcollisional velocities are deduced from the energy and impul-
sion conservation laws. A cell time variable is increased by an evaluation
of the approach time of the colliding pair and next collisions are performed
untill the cell time reaches A¢. In this paper the reaction is supposed to
have a vanishing activation energy and each collision can be reactive with
the same probability s, corresponding to a steric factor. The case of an
activated reaction is treated in ref. 15. At small s, the simulation results for
rate constant k coincide with the value obtained under the assumption of
equilibrium for the velocity distribution:>

nkgT
m

k=4Cd?

Sr (8)

where C is density.
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In addition, we have looked for an approximate analytical solution of
the Boltzmann equation for the distribution f,(x, v, ¢) of the positions and
velocities of particles A:

0, fu+v:0,f4 :J(fA(Vl)fA(Vll) —fa(V) fa(v1)) [V—=V4| do 44 dV,
+J (faV) f5(VY) = fa(V) f5(V1)) [V —Vy| do 45 dV,

+ffA ) f5(V}) [V—=v,| do%p dv, 9)

where v,, is the projection of particle velocity along the x-axis, ¢ 4, and 7 45
are the cross sections for elastic collisions of hard spheres A—A and A-B,
respectively, and o%, is the cross section for reaction (2). Only velocities
are indicated explicitly as arguments of the distributions in the collision
integrals, and the primes denote postcollisional velocities. The isothermal
reaction (2) which only changes the chemical identity of molecules does not
affect the velocity distribution of the mixture as a whole. Consequently, the
initial mechanical equilibrium of the whole system is maintained all the
time. It means that:

fA+fB=Cexp<—2ZZT> (10)

so that Eq.(9) involves only the distribution function of A. To solve
analytically the Boltzmann equation (9), we use the Chapman—Enskog
method,®*2 applied to inhomogeneous reactive systems. In this pertur-
bative approach, it is assumed that the chemical process as well as the
transport process can be treated as perturbations.®%3V Explicit results of
our analytical approach can be found in ref. 15.

Irrespective of the level of description adopted to study the wave front,
the initial profile chosen is sufficiently steep to obey the conditions of selec-
tion of the minimum velocity, U,,;,, found in the frame of a macroscopic
analysis.¥ Whatever the method chosen, the same type of boundary condi-
tions are imposed, first, to mimic an infinite medium, and second, to switch
into a frame moving with the front. To compute the fluctuating propaga-
tion speed, the idea is to follow the total number of particles A in the
system. Then, a time average of this speed is determined. For example, the
initial and boundary conditions chosen in the case of the microscopic
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simulations are the following. Initially, particles A are located in the cells
of the left half, and particles B in the cells of the right half of the medium.
When the total number of particles A becomes greater than its initial value,
the first left cell becomes the last right one while its particles A are trans-
formed into B’s, and the front position ¢(z) is increased by Ax. Provided
the length of the simulated medium is sufficiently large (about ten times the
front width) both the particles A on the extreme left and the particles B on
the extreme right have equilibrium velocity distributions,*> allowing us
to change their chemical nature if necessary. For the parameter values
chosen, this trick is actually performed only about every 100th time step on
average. It amounts to switching into a frame moving with speed U(t),
equal to the time derivative of ¢(z), appearing as the fluctuating front
speed. Independently of the microscopic realization of the initial condition
(reducing at a macroscopic level to a step function), the time average of the
local fraction of particles A in the moving frame evolves to a stationary
profile and the moving frame reaches a stationary mean speed { U).

As summarized in Table I, mean propagation speeds, different from
the minimum speed, U,,;,, are observed when solving the Langevin equa-
tions, the master equation, the Boltzmann equation, and when performing
microscopic simulations using Bird’s method: One observes three effects of
different nature, leading all to a speed correction with respect to the predic-
tion of the macroscopic description.

Table I. Corrections to the Minimum Propagation Speed U, Induces by
Different Types of Perturbations with Respect to the Deterministic
Macroscopic Description. The Results Are Deduced from the Comparison of
Several Methods of Description of Different Scales. The Presence of an X
in a Cell Means that the Method Used Takes into Account the Mentioned
Perturbation

Discretization of the Fluctuation of the = Departure from local
variables variables equilibrium
Langevin equations X
Master equation X X
Microscopic X X X
simulations
Boltzmann equation X
Consequences on Uy, — <UD oc (In(N)) ™2 (UY — Uy o N™V3 (UY =Ulyn =2 /K'D'
mean front speed N> 108 N<10* Refs. 14-16

Refs. 12, 13 Refs. 7, 8, 10, 16
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3. COMPARISON OF THE RESULTS GIVEN BY THE
DIFFERENT METHODS

3.1. Effect on Wave Front Speed of the Discretization of the
Variables

When dealing with discrete variables, a speed decrease with respect to
U,in 18 observed. This effect has been interpreted in the frame of a macro-
scopic description by Brunet and Derrida*? which have introduced a small
cutoff in the nonlinear reactive term of the partial differential equation
given in Eq.(1). In a microscopic simulation, 1/N, where N is the mean
number of particles in a spatial cell, plays the role of an effective cutoff.
Actually, one can see 1/N as the height of a small jump in the leading edge
of the front, due to the presence of the first A particle in a sea of B’s. Since
the analysis® of the partial differential equation given in Eq. (1) has
revealed the crucial role played by the shape of the leading edge in the
speed selection problem, the determining role of a cutoff can be intuitively
suspected. Brunet and Derrida® have shown that the presence of a cutoff
decreases the front speed according to the following logarithmic law

Umin — < U> _ 7-[2

Umin Z(IH(N))z

(11)

According to Eq. (11), the effect of discretization only disappears for very
large values of N. It is well-known when performing MD simulations in
standard, noncritical situations, that a set of hundred molecules already
have macroscopic properties in average. In the case of a wave front
propagating into an unstable state, or more generally, when the dynamical
system admits a continuum of stable solutions, corrections to the macro-
scopic limit are observable even for N=10'® particles per cell.'?) They
should be detectable in experiments involving small systems.

3.2. Effect on Wave Front Speed of Internal Fluctuations

Independently of the discretization of the variables, one observes an
other effect which cannot be explained in the frame of a purely deter-
ministic description. This second effect is isolated in the approach using
Langevin equations for continuous variables: It can be attributed to inter-
nal fluctuations. We have shown”-® that the numerical integration of the
Langevin equations associated with Fisher-K PP model leads to an increase
of the front speed according to a power law with a small exponent equal
to 1/3. The effect of fluctuations is also present in the results deduced from
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the master equation'® and from microscopic simulations using Bird’s
method,'® but it is superimposed to the effect of the discretization of the
variables. Figure 1 shows the deviations from Brunet and Derrida predic-
tion'?) given in Eq. (11). These deviations are observed when solving the
master equation by Gillespie method** and performing microscopic simu-
lations using Bird’s method®’ in a domain of small N, obeying N < 10%,
These two independent descriptions prove that a positive correction to
speed, due to internal fluctuations, is added to the negative correction
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Fig. 1. Effect on wave front speed of the discrete number N of particles in a cell: relative
deviation from U,,, of the time averaged front propagation speed versus 1/(In(N))> The
crosses are results of microscopic simulations using Bird’s method (steric factor s,=
exp( — 1.5), number of simulated cells n, =800, cell length Ax = E,;,/79 = /6 where A is the
mean free path and where E.,;, is the macroscopic prediction for the front profile width). The
open squares are results given by the master equation (number of simulated cells n, =512, cell
length Ax = E,,;,,/64). The line with a slope of —7z?/2 corresponds to the prediction of Brunet
and Derrida when a cutoff is introduced in the deterministic equation.
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Fig. 2. Effect on wave front speed of the internal fluctuations: log,,—log;, plot of the
opposite of the relative deviation from U, of the time averaged front propagation speed
versus mean number N of particles in a cell. Crosses and open squares correspond to the
same results as in Fig. 1. The line with a slope of —1/3 is obtained when solving the Langevin
equations for continuous variables (the local fractions).

induced by the discretization of the variables. Using in Fig. 2 a log-log plot
for the same results, reveals the following power law:

< U> — Umin
U

min

~N—7 (12)

where the exponent y =0.24 +0.02 is close to 1/3.

These results should answer the question raised in the literature!’ 1% 12 13)
about the existence of a power law or a logarithmic correction to the front
speed: we conclude that both exist, but the power law given in Eq. (12)
cannot be neglected in the domain of small N (N < 10*) whereas the
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logarithmic correction given in Eq. (11) prevails at large N. On the one
hand, the very good agreement between master equation and microscopic
simulation results given in Fig. 1 in the range N < 10% and, on the other
hand, the noticeable decrease of the deviation between these results and the
logarithmic prediction as N increases and tends to 10* make the conclusion
quite reasonable.

Because of obvious computational costs, the microscopic simulation
results cannot be obtained for enormous values of N so that they are
significantly affected by internal fluctuations and discretization effects.
However, if one performs microscopic simulations in order to study the
actual macroscopic properties of a system, the effects of internal fluctua-
tions and those induced by the discretization of the variables can be seen
as artifacts, which vanish in the macroscopic limit.

3.3. Effect on Wave Front Speed of a Departure from
Local Equilibrium

The results given by the microscopic simulations a la Bird exhibit a
third effect on wave front speed, only detectable in approaches which give
access to the velocity distribution of the particles. This third effect, which
remains unchanged in the macroscopic limit, is induced by a perturbation
of the local equilibrium observed when the chemical reaction is fast.(?%27)
Actually, if the characteristic time between two reactive collisions is not
large enough compared to the time between elastic collisions, the particle
velocity distribution does not have time to relaxe toward the equilibrium
distribution at temperature 7" between two successive perturbations by the
chemical reaction. Even if the reaction does not have an activation energy,
the results of the microscopic simulations given in Fig. 3 show that the par-
ticles A have a higher kinetic energy, i.e., a higher temperature in the front
zone. In the same way, the particles B have a lower temperature in this
region since the total kinetic energy is conserved. The effect of chemical
reaction (2) does not only result in an increase of the effective temperature
of particles A but also in a deviation from the Maxwellian character of the
particle velocity distribution. As shown in Fig. 3, the departure from the
Gaussian shape is characterized in the front zone by nonvanishing values
of the kurtosis x, restricted to coordinates y and z

m 2 2 2)\2 2 2\2
6= (3 ) (<024 0.2 = 20,240,297 (13)

Here v, and v, are the particle velocity components along y- and z-axis.
In the Monte Carlo procedure adopted by Bird® and in agreement with
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Fig. 3. Departure from local equilibrium in the leading edge of the front: spatial variations
in the moving frame of the kurtosis x,. of the A particle velocity distribution, of the relative
deviation of its second moment {v *+v_*) to its equilibrium value 2k ; T/m, and comparison
of time averaged local fraction {A4) of particles A (solid line) with the corresponding deter-
ministic profile propagating with the minimum velocity U,,, (short-dashed line). Solid (resp.
long-dashed) lines correspond to microscopic simulations (resp. analytical, based on the
Boltzmann equation) results. The reaction has a vanishing activation energy, the steric factor
equals s,=exp(—0.5), the mean number of particles in a cell is N =1000.

the expression of the collision integral in the Boltzmann equation, a colli-
sion, however elastic or reactive it is, is accepted if the relative speed of the
colliding pair is sufficient. Considering again the autocatalytic scheme given
in Eq. (2), one sees that a collision between a particle A and a particle B
will be most likely accepted if A and B are both fast so that the two A’s,
which will be created in case of reaction, will also be most likely fast. It is
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therefore not surprising to observe an increase of the kinetic energy of
particles A at the reactive interface between particles A and B. This effect
is detectable for large steric factors and disappears!® as the reaction
becomes slow, for s,<exp(—7). From a macroscopic point of view, an
important consequence of the deformation of the particle velocity distribu-
tion is the modification of reaction rate constants‘®*27) and transport coef-
ficients.®**32 Admitting that the marginal stability criterion® is valid, the
front speed deduced from the Boltzmann equation reads

U=2./k'D (14)

where k' and D’ are respectively the rate constant and the diffusion coef-
ficient deduced from the second order perturbation solution™® of the
Boltzmann equation. The explicit expression of k' and D' can be found in
ref. 15. At first sight, the results deduced from Boltzmann equation and
from the microscopic simulations do not coincide in Fig. 4. As recalled in
Table I, the front speed correction deduced from Boltzmann equation is
only due to nonequilibrium effects whereas the microscopic simulations
lead to the superposition of three independent effects—discretization of the
variables, internal fluctuations, and nonequilibrium effects. At small steric
factors s <exp(—3), ie., for sufficiently slow reactions, nonequilibrium
effects on front speed become negligible and microscopic simulation results
agree with master equation results: In this range of steric factors, the
simulation results only account for discretization and fluctuation effects.
Hence, their comparison with the results deduced from Boltzmann equa-
tion simply requires a translation along the ordinate axis until the
asymptotic values at small s, coincide. Now, the agreement is much better.
Note however that the speed correction deduced from the perturbative
approach of the Boltzmann equation is not reliable at very large values
of s, when the perturbation of the distribution by the chemical reaction
becomes too important. For values of s, close to 1, the approximate
analytical approach overestimates the speed correction.

3.4. Do the Results Depend on the Dimension of the Medium?

The results of the previous sections have been obtained in a 1d-medium,
essentially to limit the computational costs. The efficiency of the numerical
integration of the Langevin type equations given in Egs. (5) allowed us to
compare the results obtained in 1d-, 2d- and 3d-media: At this scale of
description, the mean velocity of the front does not depend on the dimen-
sion of the medium.” The paper of Riordan et al.®® incited us to determine
if the time variation of the front position variance depends on the dimension
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Fig. 4. Effect on wave front speed of the perturbation of local equilibrium by a nonactivated
reaction: relative deviations from U, of the time averaged front propagation speed versus
steric factor s, (in logarithmic units). The crosses correspond to the results of microscopic
simulations using Bird’s method: The mean number of particles in a cell is fixed to N =20,
the cell length, 4x, varies with s, in order to impose E.;,/4x=64. The dashed curve is
deduced from a perturbative solution of the Boltzmann equation. The straight (solid) line is
the result given by the master equation for N =20 and E,;,/4x = 64.

of the medium. Using Monte Carlo simulations on a lattice, Riordan et
al.”® observe that in a 2d-medium, the front position does not have a dif-
fusive motion: They observe an increase of the front position variance as
*** instead of r. Figures 5 and 6 give the evolution of position variance
determined from an ensemble average, after integration of Langevin type
equations for a large number of different realizations of the same macro-
scopic initial condition. As shown in Fig. 5, the choice of very steep initial
conditions corresponding at a macroscopic level to a step function, induces
the existence of a transient regime with a nondiffusive front position
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Fig. 5. Log-log plot of the variance of front position ¢(¢) versus time for different types of
initial conditions (IC) or different minimum propagation speeds U,,,. The Langevin equa-
tions associated with Fisher model are solved numerically in a 2d-medium of 110 x 64 cells
for the following parameter values k = D = U,;,/2, N =1000. In each case, the statistics is per-
formed over 20 different realizations of the same type of initial conditions.

motion which is replaced at large time by the classical spreading. If we
choose as initial conditions different realizations of the profile, which is
stationary in the moving frame, a diffusive motion is observed from the
very beginning, irrespective of the medium dimension, as shown in Fig. 6.
There are two main differences between the approach of Riordan et al.®
and ours. The first point is that Riordan et al. consider the reversible model
A+ A= A whereas we deal with the irreversible Fisher model given in
Eq. (2). Both models lead to the same macroscopic deterministic equation
but to different mesoscopic and microscopic properties. The second point
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Fig. 6. Log-log plot of the variance of front position ¢(¢) versus time in a ld-, 2d-, or 3d
medium. In each case, the statistics is performed over 20 different realizations of the stationary
profile in the moving frame. The Langevin equations associated with Fisher model are solved
numerically for the parameter values k =D =0.1, N=1000 in a 1d-medium of 110 cells, in a
2d-medium of 110 x 64 cells, and in a 3d-medium of 110 x 64 x 64 cells. The result are com-

pared with 2d-lattice-gas simulations of HPP type. The curves have been arbitrarily shifted to
avoid superposition.

is that reaction is limited by diffusion in ref. 5 whereas rate constant k and
diffusion coefficient D are independent in our case. This second point
reveals as being important and may explain the observed difference of
behaviors with respect to the dependence on medium dimension.

As shown in Fig. 6, our results deduced from Langevin type equations
are confirmed by the simulations we performed on a 2d-reactive lattice gas
cellular automaton®® of Hardy, de Pazzis, and Pomeau (HPP) type.¥
We are aware that obtaining the same power laws using the Langevin
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equations and other independent methods does not necessarily validate the
explicit expressions of the Langevin forces F, and F, used in Eq.(5). It
simply proves that some, essential properties of the fluctuating dynamics
are included in the equations we used. It is not sufficient to legitimate the
system-size expansion of the master equation. Using Poisson representa-
tion®*2?% or renormalization group method®® should allow us to deter-
mine if we used proper internal noise expressions.

4. CONCLUSIONS

The propagation of a wave front into an unstable state offers a generic
example of situations where the macroscopic properties of the system are
influenced by the details of the particle dynamics. To analyze their conse-
quences on mean wave front speed, resorting to microscopic simulations is
therefore essential. The results deduced from microscopic simulations a la
Bird®® allow us to observe effects of different origins: The front speed
varies, for example, with the mean number N of particles simulated in a
spatial cell and with the frequency of the reactive collisions. Nevertheless,
the vast amount of information included in the microscopic simulation
results is hardly exploitable alone. It turns out that the comparison of
several approaches, at different scales, is necessary to discriminate between
the different sources of disagreement with the prediction of the deter-
ministic theory. Keeping a macroscopic description level, Brunet and
Derrida® prove that the introduction of a small cutoff in the nonlinear
term of the partial differential equation gives account for the dependence of
the simulation results on N, for large N: the front speed is decreased by the
discretization of the variables according to the following logarithmic law

Umin _ < U> _ n2

N 108
Uni (N>

At a mesoscopic level, the Langevin approach allows us to isolate the effect
of internal fluctuations and to prove that they increase the mean wave front
speed as

< U> B Umiu
U

min

~N-13 N<10* (15)

As shown by the direct simulation of the master equation and by the
microscopic simulation, the logarithmic law induced by discretization dom-
inates at large N whereas the fluctuation effect can be detected at small N.
The analytical approach based on the Boltzmann equation enables us to
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isolate the effects of a fast chemical reaction and to prove that the decrease
of the front speed, observed in microscopic simulations for frequent reac-
tive collisions, is due to a departure from local equilibrium. Three distinct
effects, discretization of the variables, internal fluctuations, and perturbation
of particle velocity distribution have been shown to modify the mean front
speed. This unusual sensitivity is related to the existence of a continuum of
stable wave front solutions. Actually, it is to be noted that a trigger wave,
propagating with a uniquely defined speed between two stable stationary
states has completely different properties. Using Langevin equations, we
have shown® that the internal fluctuations also increase the speed of this
type of front, but their effect dies as N ~¥2. An analogous power law with
the same value of the exponent has been found'® when introducing a
cutoff 1/N in the chemical term of the partial differential equation. The
trigger wave therefore appears as a good candidate for the analysis of the
only effects of departure from local equilibrium on the front speed. Work
in this direction is in progress.®*”

APPENDIX. GILLESPIE METHOD

We use the Monte Carlo (MC) method introduced by Gillespie'®” to
directly simulate the master equation (3). To determine a new configuration
{N 4(i), Ng(i)} at each time step, it is necessary to choose appropriately the
following random variables: (i) a waiting time 7 for the next event, (ii) a
cell in which the event occurs, and (iii) the type of the event (reaction or
diffusion). For a Markovian process, the probability distribution of 7 is
exponential and given by v, exp(—v.,7). Here v, =>,v(i) is the total
rate of all the processes in the system, i.e., the sum of the rates v(i) of the
processes occuring in each cell i. Thus, at point (ii) an index i of a cell in
which the next event occurs is chosen with the probability v(i)/v,,. The
rate v(i) depends on the problem considered and its explicit form follows
from the transition rates involved in the corresponding master equation.
According to Eq. (3) for the Fisher wave front, the rate of the processes in
the ith cell is v(i)=kN 4(i) Ng(i)/N +2(D/(4x)*)(N 4(i) + N (i)). Having
determined a cell number i, a process of a given type is chosen at point (iii)
with a probability proportional to the contribution of its rate to v(i). For
example, the probability of reaction is kN 4(i) Ng(i)/(Nv(i)) and the prob-
ability of diffusion for a A particle to jump to the left or the right adjacent
cell is given by (D/(A4x)?) N 4(i)/v(i). We generate the random evolution of
the system in a single time step by choosing 7, i and a type of process
according to the given above probabilities following from the configuration
{N (i), Ng(i)} at that time. Time is increased by 7 and the populations
{N 4(i), Ng(i)} are updated according to the chosen process.
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